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Abstract—As the traditional performance gains of technology
scaling diminish, one of the most promising directions is building
special purpose fixed function hardware blocks, commonly referred
to as accelerators. Accelerators have become prevalent in industrial
SoC designs for their low power, high performance potential. In
this work we explore thousands of implementations of classical
software workloads in hardware. This thorough, detailed design
space search of hardware accelerators gives architects a quantita-
tive way to reason about the differences in implementations. The
exploration presented in this work shows that the space is full of
poor design choices. By thoroughly analyzing each benchmark, we
show which provide the most performance when implemented in
hardware given a fixed power budget and explain which design
techniques work best for each workload.

Index Terms—Accelerator, Design Space Exploration, Power
Performance Trade-offs

I. INTRODUCTION

Over the past decade, power has increasingly constrained
performance in modern general purpose cores. In light of di-
minishing performance gains from process scaling, a paradigm
shift is necessary to sustain performance improvements in future
technology generations. Much of the high power/performance
cost associated with computing on general purpose cores is due
to control flow and data movement overhead. Specialization,
which eliminates the majority of these costs, offers a viable
solution.

Hardware accelerators, a type of specialization in the form
of fixed, custom circuits designed for specific tasks, are already
used across several computing domains. Currently accelerators
are designed by hand. This approach is very time consuming
and doesn’t reveal the higher level trade-offs of a design. Thus
to optimize and understand accelerator power/performance, a
larger design space must be considered.

Transitioning to a quantitative accelerator design approach,
this paper presents extensive design space explorations, con-
sidering multiple architectural and circuit parameters for each
benchmark. Our analysis pinpoints how properties of each
benchmark affect power/performance trade-offs in the design
space. Through an understanding of these properties, we show
that the design space is substantial and should be understood
before optimizing a particular implementation.

Specifically, we quantify the power/performance trade-offs
of accelerators compared to an extremely low-power general
purpose processor. Our results show that accelerators demon-
strate impressive energy efficiency relative to general purpose
cores across all benchmarks. Moreover, we observe that even
optimal designs along Pareto frontiers exhibit large variations in
their power/performance - which we credit to workload intrin-
sic characteristics. A true understanding of power/performance

trade-offs is further developed by breaking down each workload
in terms of instruction composition, accelerator area, and energy
consumption. Our analytical view of accelerator design shows
and makes sense of the large, diverse power/performance space.

The contributions of this work are:
1) We perform a thorough design space exploration for accel-

erators sweeping both architecture- and circuit-level param-
eters.

2) We compare different benchmarks’ power/performance char-
acteristics along Pareto frontiers and demonstrate how
unique workload characteristics can lead to substantially
different accelerator designs.

3) We show relative power/performance trade-offs by analyzing
the Pareto optimal designs and demonstrating which work-
loads benefit the most from hardware acceleration.

The remainder of the paper is organized as follows: Section II
discusses related work on hardware accelerators and design
space exploration. Section III details the workflow and bench-
marks used to build the design space. Section IV presents our
analysis of the accelerator design space. Section V summarizes
the takeaways of this work.

II. RELATED WORK

General purpose computing offers the flexibility to run arbi-
trary workloads but often exhibits less performance and energy
efficiency than specialized hardware [1]. The term accelerator, a
type of specialization, is often a bit ambiguous. As the efficiency
of specialization proves an effective remedy for these general
purpose inefficiencies, many innovative implementations of
accelerators have emerged. In [6] [9] [5] different approaches
are taken to integrate specialized functional units of various
granularity directly into a general purpose core. In [3] [8]
[7] accelerators are considered as SoC components where data
must be offloaded to the accelerator’s own memory before the
computation can begin. We refer to these types of accelerators
as tightly- and loosely-coupled respectively [2].

The advantage of a tightly-coupled design is that there is min-
imal data communication and no invocation overhead. Loosely-
coupled accelerators are advantageous in that special memories
can be implemented to better suit a workload’s needs, and
designs have fewer restrictions as they need not be implemented
with the core directly. In this work we focus on loosely-
coupled accelerators for the large design space, assuming an
ideal memory subsystem.

In [8], Lyons et al. propose an architecture to support systems
with tens to hundreds of accelerators. They find accelerator area
is dominated by SRAM and through the Accelerator Store they
develop a way to share underutilized SRAM for little to no
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Fig. 1: Workflow used to collect power/performance metrics for
each design point.

power/performance penalty. This architecture lowers the area
price of loosely-coupled accelerators.

Cong et al. present a design space trade-off study for re-
configurable FPGA-based high performance systems using a
high-level synthesis tool [3]. The design space they focus on
is relatively modest, as designer’s knowledge was used to
manually prune the space.

As more hardware accelerators are incorporated in SoC
designs, memory subsystem and communication mechanisms
will become increasingly important. However, the design space
and trade-offs of the accelerator design are not well understood.
With this work, and the others mentioned above, we have taken
a bottom up approach to accelerator rich architectures. This
understanding of the core design and power/performance trade-
offs allows inclusive, systems level integration questions to be
studied.

In contrast to prior work, we consider a much larger design
space with low level circuit estimates of power, area, and timing
results for custom, fixed function accelerators. Focusing on a
large set of designs of loosely-coupled accelerators gives us
the design freedom to study unconstrained accelerator designs.
Memory subsystems and communication techniques are inter-
esting, related problems but orthogonal to this work. Here we
set out to answer core design questions and hope this work
paves the way for future memory subsystem studies.

III. METHODOLOGY

This section explains the synthesis flow used to generate
accelerators, benchmarks, and a general purpose core.

A. Workflow

Figure 1 shows how we generated the design space for each
accelerator. Xilinx’s Vivado, a tool for High Level Synthesis
(HLS), transforms C code to RTL; applying various directives
to the source C code allows us to generate hundreds of unique
accelerator implementations. Mentor Graphics’s ModelSim cap-
tures accurate cycle counts and activity factors of these accel-
erators. Activity factors and RTL are then fed to Synopsys’s
Design Compiler to obtain power and area estimates of the
generated accelerators based on circuit-level power analysis
and resource utilization. Both the general purpose core and
accelerators assume an ideal memory model. This was done
to make sure we fairly compare performance and to completely
understand the computational limits before further restricting
designs with different memory subsystems.

1) C-to-RTL Synthesis - Vivado: Vivado is Xilinx’s HLS
solution capable of generating RTL from C, C++, and Sys-
temC. Vivado provides directives that perform well known

Directive Start Stop Step Size
Loop Unrolling 0 N next = prev * 2

Array Partitioning 0 N/2 next = prev * 2
Pipelining 0 7 next = prev + 1

Multiplier Stages 0 6 next = prev + 3

TABLE I: Directives applied when sweeping architectural pa-
rameters, plus parameter ranges and steps.

architectural level optimizations, allowing designers to trade-off
performance, power, and area at a high level. We swept a large
subset of all available directives to understand their effects on
accelerator design. Loop unrolling, memory partitioning, loop
pipelining, and using multi-staged, pipelined multipliers had the
most pronounced effects on power/performance.

Table I, shows how the directives were swept for each
benchmark. Loop unrolling and functional unit directives shape
the core of the accelerator. Higher unrolling factors and more
aggressive functional units typically result in better performance
and higher power. Array partitioning increases the bandwidth
available to each core. Loop pipelining is mostly a scheduling
technique. The pipelining directive coordinates the core’s re-
sources and memory bandwidth with natural partitions of work
that the benchmark can be parsed into.

2) RTL Simulation - ModelSim: ModelSim was used to
simulate the Verilog generated by Vivado. The simulations yield
accurate cycle counts and detailed activity factors on a per
gate basis. We found the activity factors have a large effect
on power estimates in accelerators and as such were supplied
as input to Design Compiler to generate a more accurate
power estimate. Our problem sets, the benchmark inputs, are
generated uniformly at random. We find that this distribution
yields relatively high activity factors (a lot of switching).

3) RTL Synthesis - Design Compiler: Design Compiler syn-
thesizes the RTL implementations of accelerators to a gate-
level netlist representation using a commercial 40 nm standard
cell library. During synthesis, activity factors generated during
simulation are used to refine the power estimate for each
accelerator. We used 2 ns, 5 ns, and 8 ns clock periods to capture
cell selection differences at the circuit level. This frequency
sweep ensures that a large design space is explored, as the
period can greatly influence the power/performance of a given
RTL design. We also used different multiplier implementations
from Synopsys’s Design Ware libraries to build a library of
functional units.

B. Accelerator Workloads

We designed accelerators for workloads in the SHOC bench-
mark suite [4]. SHOC covers a large application space that
includes both memory- and compute-bound algorithms. We
study and present accelerator designs for five benchmarks from
SHOC: Triad, Reduction, Scan, Stencil, and GEMM. Each of
the benchmarks selected, though relatively simple, includes
a unique, intrinsic algorithmic property that illustrates how
different workloads require different design space analysis. The
source C code is written in such a way that it compiles on
a general purpose core and is synthesizable to Verilog. Each
benchmark in the suite is scalable and as such our findings are
independent of the problem size. To ensure a fair comparison,
we use the sequential versions of each SHOC benchmark. This
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(b) Reduction
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(c) Scan
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(e) GEMM

Fig. 2: Set of plots showing the highest performing and lowest power accelerator designs for each benchmark as a results of the
design space search. All results are normalized to Cortex-M0’s power and execution times. The Pareto points are highlighted as
squares.

implementation is well suited for the Cortex-M0 and provides
Vivado sufficient detail to extract necessary parallelism for the
accelerators.

1) Triad: Triad takes as input a scalar s and two arrays A, B.
It adds the i-th element of A to the product of the i-th element
of B × s saving and returning results in an output array, C.

2) Reduction: Reduction computes and returns the sum of
the elements of an input array.

3) Scan: Scan takes an input array of size N and outputs
an array of size N whose j-th element is the sum of the first j
elements of the input array.

4) Stencil: Stencil applies a 3 × 3 filter to an image stored
in an array. The dot product of the filter and each possible
3 × 3 subset of the source image are computed, and the result
is saved in an output array indexed by the middle pixel of the
3× 3 source image’s subset.

5) GEMM: GEMM here refers to an O(n3) implementation
of dense matrix multiply. We use the GEMM notation as the
benchmark uses integer, as opposed to single-precision, inputs.

C. General Purpose Comparison- ARM Cortex-M0

Cortex-M0 is the smallest ARM processor available. It has
a 3-stage pipeline design and targets low-power, embedded
applications. We chose a Cortex-M0 to investigate how much
workloads benefit from acceleration when compared to a very
low power general purpose core. We have a RTL implemen-
tation of the Cortex-M01 that can run the same C source
code that we synthesize. To make a fair comparison, the RTL

1ARM’s RTL implementation available to universities through DesignStart

implementation of the core was run through the same synthesis
flow as that used for the accelerators.

IV. RESULTS

In this section, results of the design space exploration are
presented, broken down, and analyzed. We begin by explaining
the design space and high-level insights. Next, each workload’s
design space is decomposed. The decomposition includes quan-
tifying the advantages of acceleration compared to running the
benchmarks on a Cortex-M0 and the differences in Pareto opti-
mal designs across each benchmark. We conclude by comparing
benchmarks to see which accelerators offer the best performance
relative to the Cortex-M0 and the differences in energy effi-
ciency between workloads with different characteristics.

A. Design Space Exploration

The design space exploration can be broken into two distinct
parts: the HLS sweeps done to generate different accelerator
microarchitectures and the netlist synthesis sweeps.

1) HLS - Microarchitecture Level Sweeps: The four di-
rectives swept are loop unrolling, array partition, pipeline
stages/issue latencies, and multiplier stages. Many more direc-
tives are available, however these four are the most notable
as they have the most pronounced effects on each design’s
power/performance. As described in Section III, loop unrolling
and functional unit selection constrain core resources, array
partitioning governs available memory bandwidth, and loop
pipelining schedules and partitions benchmarks into distinct
parts. We found that increasing loop unrolling factors and
array partitioning combine to exploit parallelism and increase



performance while simultaneously increasing power. Specifying
more aggressive functional units (i.e, pipelined multipliers) also
yields better performance with increased power costs. Loop
pipelining provides performance benefits and, since it is mostly
a scheduling construct, only uses the the functional units already
instantiated so that no notable additional leakage or internal
power costs are incurred.

2) RTL Synthesis - Operating Frequency Sweeps: The power
and performance numbers presented here were generated by
sweeping periods of 2, 5, and 8 nanoseconds. This sweep
captures the different trade-offs of the same designs running
at different frequencies. The trends of the frequency sweeps
are as expected: high frequency results in better performance
and higher power while low frequency typically provides lower
power, slower solutions.

B. Quantitative Design Space Analysis

With an understanding of the effects of each directive on the
accelerators design we now dissect the design spaces of each
of the benchmarks.

Figure 2 shows the design space of each benchmark; the
results are normalized to those of the Cortex-M0 to show the
power/performance gains. Each benchmark originally consisted
of thousands of points. To capture the differences in Pareto
optimal designs, we pruned points on the extreme ends of the
curves - points at which the Pareto curve’s slope are nearly
infinite or zero. Figure 2 suggests that even for a fixed number
of basic optimizations applied to relatively simple benchmarks
the design space is too large to comprehend with traditional
methods.

1) Triad: Figure 2a shows Triad, a completely parallel,
DOALL, non-nested benchmark performing a simple compu-
tation. Triad’s intrinsic properties, its parallelism, represent
accelerator designs that, with more resources, always result
in greater performance at a linear power cost. This intuition
is validated as the plot shows the performance can increase
until execution takes a single step (load, execute, store) given
unlimited resources. Triad is straightforward and the only real
subtlety is confirming a design is Pareto optimal. The vertical
points in Figure 2 show that a single speedup maps to many
different power costs. Hand-coding an accelerator could easily
result in one of these design points.

2) Reduction: Each iteration in Reduction produces some
data used in the calculation of the final sum. The most efficient
implementation of this algorithm is a tree adder. As shown
in Figure 2b, the Reduction benchmark yields many optimal
designs. We also find that, through expression balancing, Vivado
is able to identify and synthesize a tree adder. Most of Reduction
is control overhead as the only computation is add. This results
in very fine-tuned circuitry and substantial power savings. The
two curve patterns in the plot are for the frequencies swept at
netlist synthesis time. Since the power/performance benefits of
accelerating Reduction are so large, running the circuit with a
2 ns period yields the best results. Generally, intuition leads
one to believe that higher frequency results in higher power
consumption. The performance gains seen by Reduction are
from eliminating most of the control overhead. The actual
computation, the additions, dominate the power, which for
Reduction means speeding up the control sections by running

at a higher frequency decreases execution time for less increase
in power than with other, more compute intensive, benchmarks.

3) Scan: Since each stage of Scan requires the sum to be
computed, saved, and used as input to the next computation,
the HLS tool cannot break this loop-carried dependence as it
must wait for the previous iteration to finish. Even with an
ideal memory model and unlimited hardware resources, the
cycles necessary to complete the computation quickly reach the
lower limit. Figure 2c shows that there exists a limit on the
performance Vivado is able to extract from a given algorithm.
The three sharp curves each correspond to different frequencies
reaching their performance limit. Scan would benefit more from
algorithmic changes that mask this dependence than from circuit
or microarchitectural optimizations.

4) Stencil: Stencil is as parallel as Triad but at a coarser
granularity. If we consider each 3 × 3 dot product of Stencil
to be a single iteration then the iterations can be executed in
parallel. The added complexity comes from the need to sum
the outputs of the nine multiplications, a Reduction, and the
amount of reused data between iterations. Unlike Triad, the
input data is used more than once in many instances. Reusing
loaded data increases computational density giving Stencil a
much different characterization than Triad. In Figure 2d when
considering a power budget less than or equal to that of the
Cortex-M0, enough overhead is eliminated to support instan-
tiating power hungry multipliers which increases performance
by orders of magnitudes. These savings are possible as even
modest unrolling factors allow heavy data reuse in Stencil while
simultaneously removing control costs. Such optimization save
considerable time by eliminating repetitive loads, stores, and
simple bookkeeping.

5) GEMM: Matrix Multiply has a similar structure to Stencil
but at an even coarser granularity. Since each calculation must
use data from an entire row and column, it requires a much
greater unrolling factor to exploit data reuse and execute individ-
ual calculations (independent iterations) completely in parallel.
GEMM is shown in Figure 2e. As the reuse and parallelism are
more coarse, it takes more effort to eliminate as much overhead
as for Stencil. As such, GEMM must consume more power to
achieve the same performance as other benchmarks. Moreover,
GEMM’s computational density is so high that the required
multipliers cause the average power to far exceed that of the
low-power Cortex-M0. Understanding the power requirements
of GEMM is necessary in designing an accelerator as goals
of high performance may be completely impractical given the
power requirements.

C. Understanding Acceleration Gains

In this section we first, in part 1), we compare the bench-
marks run on the Cortex-M0 to baseline accelerator designs
(designs with no optimizations) to show where the benefits
of acceleration come from compared to a Cortex-M0. In part
2) we compare different Pareto optimal designs and show
which workloads are best suited for acceleration. Finally, in
part 3) we go a step further and decompose points on the
Pareto frontier of two benchmarks to show what increasing
accelerator performance means to different workloads along
different regions of the curve.
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Fig. 3: A comparison of efficiencies of workloads run on a
Cortex-M0 to a hardware implementation.
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Fig. 4: Comparison of power/performance gains of accelerators
against each other relative to Cortex-M0.

1) Comparing Cortex-M0 and Baseline Accelerator: There
is no standard metric to compare the overheads of accelerators
and general purpose cores. We chose instruction counts for
general purpose cores and area for accelerators. For the Cortex-
M0, only instructions executing essential computation count as
compute. As there are no instructions for the accelerators we
study, area not used for meaningful computation is classified as
overhead. In doing so we measure the same property, although
by different units, so that the two yield comparable data points
when kept relative.

Figure 3 shows that despite the variation in workload struc-
ture, almost all of the Cortex-M0 execution is overhead. Each
benchmark simulated on the Cortex-M0 was disassembled to
machine instructions and each instruction was then tagged as
either compute or overhead.

Area breakdowns presented in Figure 3 show accelerator
implementations with no directives applied (baseline designs).
An accelerator’s area is tagged as compute or overhead by
manually parsing its Verilog file and applying models of func-
tional units included in Design Ware libraries along with post

synthesis area reports. The breakdowns in Figure 3 show the
M0 implementations to be much more control intensive than
those using accelerators. By specializing on just one task, an
accelerator incurs lower control costs and dedicates more of
its resources to meaningful computation. This suggests that,
as will be seen in Figure 4, the highest gains for a single
accelerator are the ones with the highest control overhead and
lowest computational density.

2) A Relative Understanding of Optimal Designs: With an
understanding of what possible hardware implementations exist
for different workloads, we compare each benchmark’s Pareto
frontier to see which benefit the most from acceleration. Each
Pareto frontier was extracted from data presented in Figure 2
and fitted to a polynomial curve, which is plotted in Figure 4.

Surprisingly, we find Reduction to be the most effective work-
load implemented as an accelerator. When executed on a Cortex-
M0, Reduction’s cost is almost entirely control with almost
negligible computational needs. An accelerator eliminates such
overheads by building a custom control circuit; custom control
and simple computational requirements make Reduction the best
performing.

Triad has more demanding computational needs than Re-
duction but is completely parallel making performance gains
unbounded. Triad always requires more power than Reduction
to achieve a similar speedup as it requires a multiplier, which
alone consumes enough power to shift Triad’s Pareto above
Reduction.

Scan’s performance is limited at the algorithmic level and
we see its performance gains are much less than the other
benchmarks. However, since Scan’s compute needs are similar
to Reduction, only additions, we still see orders of magnitude
in power savings.

Stencil’s parallel structure lends well to large performance
increases. However, unlike Triad, each point computation still
consists of a considerable amount of control and demands more
multipliers. Figure 4 shows that this increase in complexity and
compute density means Stencil provides less performance as an
accelerator given a fixed power budget.

GEMM is the most complex and costly of the benchmarks but
also yields the highest absolute performance gains as it has high
computational density. Figure 4 shows GEMM’s Pareto optimal
curve well above others, meaning substantial performance gains
come at a large power cost to the system.

3) Efficiency Differences in Pareto Optimal Designs: To bet-
ter understand the Pareto optimal designs of different workloads,
Triad and Stencil are characterized further. Figure 5 highlights
the optimal designs for Triad (top) and Stencil (bottom) in
terms of energy and area, which present a different, more subtle
finding from our design space explorations.

Triad’s parallel nature implies nearly constant energy as
shown in Figure 5b because such a workload can always be sped
up with more resources at a fixed increase in power. Moreover,
in Figure 5c it can be observed that increasing the performance
of the benchmark (going from bar 6 to 1) results in a linear
decrease in the percentage of overhead. This is both a positive
and intuitive conclusion: optimizing for performance eliminates
overhead.

Shown in Figure 5e, Stencil’s energy characterization is less
regular. Stencil has an energy optimal point and the energy costs
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Fig. 5: Plots characterizing the Pareto optimal points in terms of energy and area breakdown.

of its Pareto optimal designs range from 0.5x to more than
3.5x as high as that of the best performing Pareto design. The
fluctuation in energy is due to data reuse and resource schedul-
ing lining up in an unintuitive way. The energy optimal point
corresponds to a large unrolling factor, relatively modest array
partitioning, pipelined multipliers, and non-pipelined loops. The
large unrolling factor allows for the greatest utilization of
loaded data for the reasonable bandwidth requirements. Since
the multiplier is pipelined and the loop is not, bandwidth
needs are amortized over multiple cycles maximizing the reuse
(efficiency) of the given resources. This results in complex
control flow and a non-intuitive energy optimal design solution.

The linear relationship between power/performance seen in
Triad is not observed here. For more complex workloads, such
as Stencil, the additional costs of a higher performing design
may not always be justified.

V. CONCLUSION

In this paper we show which properties of workloads affect
the shape of the large design space of hardware accelerators.
Comparing the Pareto optimal curves produced by our anal-
ysis of several workloads reveals which benefit most from
acceleration. By characterizing Pareto optimal implementations
of benchmarks in terms of energy we have shown that non-
intuitive combinations of architectural parameters can yield
energy optimal designs. This work is a first step in shifting
accelerator design to a quantitative, formal process.
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