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Abstract

Increasing demand for power-efficient, high-performance
computing has spurred a growing number and diversity of
hardware accelerators in mobile Systems on Chip (SoCs) as
well as servers and desktops. Despite their energy efficiency,
fixed-function accelerators lack programmability, especially
compared with general-purpose processors. Today’s accel-
erators rely on software-managed scratchpad memory and
Direct Memory Access (DMA) to provide fixed-latency mem-
ory access and data transfer, which leads to significant chip
resource and software engineering costs. On the other hand,
hardware-managed caches with support for virtual memory
and cache coherence are well-known to ease programma-
bility in general-purpose processors, but these features are
not commonly supported in today’s fixed-function accelera-
tors. As a first step toward cache-friendly accelerator design,
this paper discusses limitations of scratchpad-based memo-
ries in today’s accelerators, identifies challenges to support
hardware-managed caches, and explores opportunities to ease
the cache integration.

1. Introduction

Transistor density scaling continues to bring us more transis-
tors on a single chip, but traditional power and performance
scaling benefits no longer exist [13]. This has led to the increas-
ing popularity of hardware accelerators to deliver more than
100× energy efficiency gains, compared to general-purpose
processors. Analysis of die photos from three generations of
Apple’s SoCs: A6 (iPhone 5), A7 (iPhone 5S) and A8 (iPhone
6), shows that consistently more than half of the die area is
dedicated to blocks that are neither CPUs nor GPUs, most of
which are application-specific hardware accelerators, shown
in Figure 1.

Although hardware acceleration has become an essential
component in today’s SoCs, fixed-function accelerators are
usually loosely-coupled with the rest of the system, incur-
ring inefficient data movement and high software engineer-
ing cost. Specifically, state-of-the-art accelerator designs use
scratchpad memory, i.e., software-managed on-chip SRAM
with a dedicated address space, to store the accelerator’s local
data. Scratchpad memory is more area- and power-efficient
than cache memory, as it does not require tag comparison
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Figure 1: Die area breakdown.

and address translation [1]. In addition, addressed in an in-
dependent address space, scratchpad memory guarantees pre-
dictable memory access latencies, making it appealing not only
for hardware accelerators but also embedded processors and
GPUs. However, moving data between general-purpose cores
and accelerators requires cumbersome software invocations of
DMA engines, imposing additional burdens on programmers.

Hardware-managed caches automatically capture an appli-
cation’s spatial and temporal locality while remaining trans-
parent to programmers or compilers. Cache hierarchies, with
a shared virtual address space for the whole system, simplify
sharing of data between general-purpose cores and acceler-
ators, thereby eliminating unnecessary explicit copies. The
quest for improving programability via hardware-managed
caches is not new; general-purpose GPU computing has
evolved to a mix of cache hierarchy and scratchpad memory
to get the best of both [26].

However, the benefits of caches come at a price. First,
cache access depends on the runtime memory environment,
creating unpredictability. Second, as discussed earlier, caches
incur higher area and power costs compared to scratchpads.
Moreover, a shared virtual address space requires support for
address translation. Translation look-aside buffers (TLBs)
have been widely used in general-purpose CPUs to enable fast
address translations, but they consume a significant amount of
power and area. Bringing cache hierarchies to accelerators is
even more challenging, as accelerator architectures are funda-
mentally different from traditional programmable processors.

Recently, industry has started some initial explorations in
efficient accelerator-cache interfaces, such as IBM’s Coher-
ent Accelerator Processor Interface (CAPI) [34] and Intel’s
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Table 1: On-chip memory for different architectures.

Cache Scratchpad

General-Purpose CPUs Y

Embedded Processors Y Y

GPUs Y Y

Fixed-Function Accelerators Y

integration of a Xeon processor with a programmable and
coherent FPGA in a single package [7]. AMD and other Het-
erogeneous System Architecture (HSA) foundation members
have committed to providing a unified virtual address space
for heterogeneous SoCs [31]. However, tightly-coupled ac-
celerators with a shared address space on SoCs are still not
supported.

This paper describes our work in progress toward an ac-
celerator architecture that can tolerate variable-latency cache
accesses and efficiently support virtual-to-physical address
translation by exploiting application-intrinsic characteristics.
We envision future SoCs to include accelerators with both
scratchpad and cache structures based on the applications
at hand. In this paper, we compare scratchpad and cache
memories for accelerators in detail, lay out the challenges
associated with designing caches for accelerators, and present
opportunities that designers can leverage to enable efficient
accelerator-cache interfaces.

2. Related Work
There has been a significant amount of prior work to optimize
on-chip memory hierarchies for improving performance and
programability of embedded processors, GPUs and accelera-
tors (Table 1).

Embedded Processor On-Chip Memory. Scratchpads are
widely used in embedded processors to deliver predictable
performance, especially for time-critical tasks. For example,
IBM’s Cell processor relies on DMA to move data between
the SPU scratchpads and off-chip memory [8, 20]. Prior work
in the embedded processor community have explored the costs
and benefits of scratchpad and cache systems [1, 18]. Ideas
like column caching and hybrid cache have been proposed to
provide the benefits of both scratchpads and caches [9, 10].

GPU On-Chip Memory. Although modern GPUs origi-
nally started with software-managed scratchpads only, they
have evolved to include hardware-managed caches to capture
complex memory access patterns and improve programability.
NVIDIA’s Fermi architecture first introduced a cache hierarchy
in its GPUs in 2009 [26]. With both scratchpads and caches
enabled in GPUs, studies show that cache hierarchies improve
the performance of some applications, but in other cases it can
either hurt performance or not affect it at all [17, 21], depend-
ing on the application’s memory access patterns. Efficient
DMA operations on GPUs to reduce the data movement cost

between local scratchpads and global memory have also been
introduced [3, 16].

Accelerator On-Chip Memory. Hardware accelerators
rely on scratchpad memories to provide predictable memory
access latency and DMA to orchestrate data transfer. A recent
survey of commercial and open-source accelerators reveals
that scratchpad SRAMs consume 40 to 90% of the accelerator
area [24]. Methods for on-chip SRAM sharing across acceler-
ators [24] and sharing between last-level caches (LLCs) and
accelerator scratchpads [12,14] have been proposed to increase
scratchpad utilization.

Accelerators also offer opportunities to customize on-chip
SRAMs based on an application’s memory access patterns
[15, 30]. The Smart Memories architecture is an example
of memory customization wherein a reconfigurable memory
substrate made of small SRAM blocks can be configured to
implement a wide range of memory systems [25].

Virtual Memory. Although modern GPUs have long sup-
ported cache hierarchies and have been integrated with CPUs
on the same die, GPUs still lag behind in terms of virtual mem-
ory support. GPU virtualization [11, 19, 35] and GPU TLB
designs [28, 29] have been proposed recently to enable tight
integration of GPUs with CPUs and reduce GPU programming
effort. TLB design is crucial for both CPU and GPU perfor-
mance because it sits on the critical path. There have been
prior work on TLB optimizations leveraging either operation
system behavior [27] or application characteristics [2, 4].

Virtual memory for accelerator research is still at its very
early stage. One study in this area is ShrinkFit [23], which pro-
posed accelerator virtualization to reuse accelerator datapath
logic but not memories. There has also been some progress
with respect to virtual memory support for accelerators in
recent commercial chips. The IBM POWER8 server chip
has the CAPI interface which enables applications running
on an FPGA to participate as a cache coherent peer to other
cores and CAPI-connected accelerators in the system [34].
However, the FPGA and the POWER8 chip communicate
over PCIe, an interface that was designed for high bandwidth
applications instead of applications requiring low-latency, fine-
grained communication.

3. Experimental Setup
To model accelerators with different memory hierarchies, we
integrated Aladdin, a pre-RTL power/performance accelerator
simulator [33], with the gem5 system simulator [5]. Stan-
dalone Aladdin models the datapath and local scratchpad
memories of accelerators. We leverage gem5’s DMA and
memory hierarchies, including cache and DRAM, to model
the interaction between accelerator’s datapath and the memory
hierarchies for both scratchpad- and cache-based accelerators.

The current gem5-Aladdin integration supports two types of
local memory hierarchies: scratchpads (Figure 2 (a)), in which
scratchpads use DMA to transfer data, and caches (Figure 2
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Figure 2: Accelerator memory systems.

(b)), where the accelerator’s datapath is connected to gem5’s
TLB, cache and main memory models. Functional unit power
in accelerator datapath is modeled using a commercial 40
nm standard cell library, and scratchpad and cache power are
modeled using CACTI-P (based on CACTI 6.5) [22].

4. Scratchpad-based Memory Systems

Scratchpad-based memory systems are currently the predomi-
nant memory system used by fixed-function accelerators (Fig-
ure 2 (a)). Figure 3 shows the power breakdown between
scratchpad memories (SPM) and functional units (FU) in ac-
celerators for a wide range of workloads [6]. For many work-
loads, the memory system consumes well over one third of the
accelerator’s total power. Therefore, as we integrate more ac-
celerators on our SoCs, design efforts should start focusing on
efficient memory hierarchy designs instead of just datapaths.

Compared to cache structures, scratchpads trade off pro-
gramability, DMA setup latency, and inter-accelerator sharing
of data in exchange for increased performance. In this section,
we describe each of these tradeoffs.
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Figure 3: Accelerator Power Breakdown.

4.1. Programmability

In contrast to hardware-managed caches, scratchpads are man-
aged by software, so the programmer must explicitly place
data into and retrieve data from it. This is a programming
paradigm that GPU programmers are more familiar with, but
not for most software developers, where the physical addresses
are hidden away by the virtual memory abstraction. Manually
managing memory can potentially unlock performance, but
the programming effort is significantly higher.

4.2. DMA Setup Latency

In a scratchpad-based memory system, DMA is often used as
the main data transfer mechanism. DMA frees the core from
slow I/O operations, but on the other hand it could incur a
significant setup latency. If a program on the CPU initiates
this process, there can be potentially more than a thousand
cycles between the original user-level function call and the
actual movement of data due to software invocation overheads
[36]. Even on systems where a more efficient interconnection
network for DMA transfers is available (like the IBM Cell),
this setup latency still forces programmers to amortize its cost
over a larger data transfer [8].

4.3. Data Sharing Across Accelerators

A cache coherent memory system transparently handles trans-
fer of data between cores. In contrast, each accelerator’s
local scratchpad is only visible to its own datapath. When
sharing across different accelerators occurs, shared data must
be written explicitly to a global address space before it is
copied into the subsequent accelerator’s scratchpad. This
leads to additional DMA invocations and unnecessary data
movement. A natural solution to avoid the high sharing cost is
to build a monolithic accelerator that includes all the kernels
that share data. The benefit is that it eliminates explicit data
copy between accelerators since all the data sharing happens
inside accelerators local scratchpads. However, such an ap-
proach can potentially result in a waste of die area, due to
over-provisioned local memory and the duplicated datapath
logic between monolithic accelerators.
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Figure 4: Accelerator performance vs. available memory bandwidth. Arrows indicate increasing parameter values.

5. Challenges in Cache-Based Accelerators

Caches bring many benefits to accelerator and SoC design, but
they come at a price. In order to design accelerators that use
hardware managed caches, designers must solve three impor-
tant problems, all of which incur power and area costs relative
to software-managed scratchpads: inefficient bulk data trans-
fer, virtual memory and coherence support, and nonuniform
memory access latency.

5.1. Inefficient Bulk Data Transfer

One of the biggest advantages of DMA is its efficiency for
bulk data movement. While a cache frees programmers from
having to issue explicit DMA requests, it can only bring in data
at a much smaller granularity (cache-line size). In addition, the
number of parallel memory requests generated from a cache
can be further constrained by the size of the MSHRs and cache
line fill buffers, leading to low memory-level parallelism.

Figure 4 compares the performance scaling of scratchpad-
based accelerators with DMA and cache-based accelerators
for kmp and md-knn. kmp is a string-matching application
that scans a list of string to find a target pattern. It is highly
serial and I/O bound without much computation in its datapath.
md-knn is a molecular dynamics simulation using k-nearest-
neighbors to track the relevant molecular interactions, which
has a much higher compute density than kmp.

We see that increasing memory bandwidth through scratch-
pad partitioning for scratchpad-based accelerators does not
affect the performance of kmp, since it is a very serial bench-
mark. In contrast, increasing cache-line size improves its
performance up to 30% due to the spatial locality in the string
access, but the area cost of increasing cache-line sizes can
become prohibitive. On md-knn, the cache-based system can
actually outperform the scratchpad-based system, even with

small cache-line sizes. This is because unlike scratchpads and
DMA, caches are more efficient at on-demand, fine-grained
data transfer. In the case of md-knn, a cache-based accelerator
can start the computation right after the initial required cache
lines are ready, rather than waiting for the entire input data to
arrive1. Hence, cache-based memory hierarchy is inefficient
for bulk data movement in I/O bound applications like kmp,
but its fine-grained data transfer capability can be beneficial
for applications like md-knn.

5.2. Virtual Memory and Coherence Support

In order to reap the benefits of unified address space, cache-
based accelerators require TLBs to keep track of the virtual-
to-physical address translation. Despite the high power and
area costs, TLBs have proved to be effective to cache address
translation for general-purpose cores. However, TLB designs
for accelerators can be more challenging due to the loss of
locality from stack accesses.

In general purpose processors, stack is a reserved portion of
the main memory. One important use of stack memory is for
register spills, that is, variables that cannot be allocated to the
available registers of the given ISA. While the memory space
of stack addresses is usually small, stack is accessed very
frequently leading to high temporal and spatial localities [32].
In contrast to general-purpose processors, accelerators are
not tied to a specific ISA. In fact, accelerators tend to have a
much higher number of ISA-defined registers, like GPUs, or
eliminate ISAs altogether to give designers more flexibility to
customize the number of registers for different applications.
Such flexibility reduces the overall memory accesses from
accelerators, but at the same time it filters out stack references
which have good memory locality.

1Double buffering techniques are commonly used to alleviate this problem
in DMA, but they still do not provide as efficient fine-grained data transfers.
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Figure 5: TLB miss rates.

Figure 5 shows the TLB miss rates for stack accesses, heap
accesses and combined (global) for a range of applications [6].
Global miss rate is the TLB miss rate from running on general-
purpose processors with a mix of stack and heap references.
On average, heap accesses have around 8× higher TLB miss
rates than the overall global miss rates. Since accelerators
have very few stack references, their TLB miss rates are better
characterized by the heap miss rates shown. Thus, accelerator
TLBs must be designed with this behavior in mind.

One way to relieve accelerator TLB pressure is to use large
pages, since accelerators are likely to access contiguous virtual
pages. While this may sound intriguing at first, it has its own
complexities. In order to guarantee that accelerator workloads
are allocated with large pages, programmers need to explic-
itly identify the data region accelerators touch and guide the
memory allocation process, which could be non-trivial.

Moreover, accelerators with local private caches also need
to participate in cache coherence protocols. An accelerator’s
cache controller needs to be carefully architected for either
snooping- or directory-based coherence protocols, because the
benefits of participating in the coherence mechanism must be
balanced against the associated bandwidth and energy over-
heads. Also, being part of a larger cache coherent system
drives the design choices for the line size of the accelerator’s
caches. Although accelerators may benefit from the spatial
locality of large cache line sizes, the cost of false sharing
introduced due to the large lines could lead to premature re-
placement of lines. Architects will need to carefully weigh
these tradeoffs to support cache coherent interfaces for accel-
erators.

5.3. Nonuniform Memory Access Latency

Accelerators are typically designed for fixed-latency mem-
ory structures because predictability reduces control logic
complexity. To maximize performance out of a cache-based
memory system, which introduces unpredictability in memory

Figure 6: TLB miss behavior.

access latencies, accelerators may need to support hit-under-
miss, pipeline stalls, and even out-of-order memory accesses.
Although these techniques are already implemented in general-
purpose CPUs, there are two problems with applying them
directly to accelerators. First, the area and power overhead of
structures like reorder buffers and load/store queues is non-
trivial. Second, these structures were designed for instruc-
tion-oriented computation, but for fixed-function accelerators,
their performance, power, and area improvements are in part
due to not needing to decode instructions in the first place
(other types of accelerators like DSPs and GPUs implement an
ISA and thus need instruction-decoding logic, albeit in a more
limited fashion). In order to support these kinds of features,
architects will need to design analogous mechanisms that do
not impose such heavy costs on accelerators.

6. Opportunities in Cache-Based Accelerator
Despite the challenges in designing cache interfaces for ac-
celerator, the application-specific nature of accelerators also
offers opportunities to simplify the designs. One example
is the regular memory access patterns usually exhibited by
accelerator workloads. Figure 6 shows the time series plot of
addresses that cause TLB misses over time for kmp. We see
that the TLB miss behavior is extremely regular, occurring
every 18K cycles as it accesses a new page. This type of regu-
larity is very common for a wide range of accelerator-friendly
applications, like image processing, graphics, and machine
learning. Hence, prefetching for both TLBs and caches have
the potential to improve the performance of cache-based accel-
erators. Another opportunity lies in the coordination between
general-purpose cores and accelerators on the SoCs. There
may not be a need for accelerators to provide full-blown virtual
memory support. Complex functions, like page table walking,
can be offloaded to the general-purpose cores.
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7. Conclusion
Accelerators with cache hierarchies simplify the communi-
cation between accelerators and the rest of the SoC, freeing
programmers from explicit handling low-level data movement.
Such architectures open up many opportunities to sustain the
increase of computational power in our systems without limit-
ing programability. This paper is a first-step study in shifting
accelerator design toward a more integrated and programmable
approach.
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