
...

THE ALADDIN APPROACH TO
ACCELERATOR DESIGN AND MODELING

...

THE AUTHORS DEVELOPED ALADDIN, A PRE-RTL, POWER-PERFORMANCE ACCELERATOR

MODELING FRAMEWORK AND DEMONSTRATED ITS APPLICATION TO SYSTEM-ON-CHIP

(SOC) SIMULATION. ALADDIN ESTIMATES PERFORMANCE, POWER, AND AREA OF

ACCELERATORS WITHIN 0.9, 4.9, AND 6.6 PERCENT WITH RESPECT TO REGISTER-

TRANSFER LEVEL (RTL) IMPLEMENTATIONS. INTEGRATED WITH ARCHITECTURE-LEVEL

GENERAL-PURPOSE CORE AND MEMORY HIERARCHY SIMULATORS, ALADDIN PROVIDES A

FAST BUT ACCURATE WAY TO MODEL ACCELERATORS’ POWER AND PERFORMANCE IN AN

SOC ENVIRONMENT.

......As we near the end of Dennard
scaling, traditional performance and power
scaling benefits based on technology improve-
ments no longer exist. At the same time,
transistor density improvements continue,
resulting in the dark silicon problem, wherein
chips have more transistors than a system can
fully power at any point in time.1 To over-
come these challenges, application-specific
hardware acceleration has surfaced as a prom-
ising approach because it delivers orders of
magnitude performance and energy benefits
compared to general-purpose solutions. Anal-
ysis of die photos (http://vlsiarch.eecs.harvard.
edu/accelerators/die-photo-analysis) from
Apple’s A6 (iPhone 5), A7 (iPhone 5s), and
A8 (iPhone 6) systems on chips (SoCs) shows
that more than half of the die area is dedicated
to blocks that are neither CPUs nor GPUs,
but rather specialized IP blocks (see Figure 1).
We also observe a consistent trend of an
increasing number of specialized IP blocks
across generations of Apple’s SoCs (see Figure

2). The natural evolution of this trend leads to
a growing volume and diversity of customized
accelerators in future heterogeneous architec-
tures ranging from mobile SoCs to high-per-
formance servers (Figure 3). To thoroughly
evaluate such architectures, designers must
perform large design space exploration to
understand the tradeoffs across the entire sys-
tem, which is currently infeasible due to the
lack of a fast simulation infrastructure for
accelerator-centric systems.

Computer architects have long been
developing and using high-level power and
performance simulation tools for general-
purpose cores and GPUs. In contrast, current
accelerator-related research relies primarily
on register-transfer level (RTL) implementa-
tions, a tedious and time-consuming process.
It takes hours, if not days, to generate and
simulate RTL and then synthesize it into
logic to estimate the power and performance
of a single accelerator design. This low-level,
RTL-centric infrastructure cannot support

Yakun Sophia Shao

Brandon Reagen

Gu-Yeon Wei

David Brooks

Harvard University

...

58 Published by the IEEE Computer Society 0272-1732/15/$31.00�c 2015 IEEE

large architecture-level design space explora-
tion, which is required to navigate the vast
parameter space governing the interactions
between general-purpose cores, accelerators,
and shared resources, including cache hierar-
chies and on-chip networks. Hence, there is a
clear need for a fast, high-level design tool to
enable broad design space exploration for
next-generation customized architectures.

In this article, we present Aladdin, a pre-
RTL, power-performance simulator designed
to enable rapid design space exploration for
accelerator-centric systems. Aladdin takes
high-level language descriptions of algorithms
as inputs and uses dynamic data dependence
graphs (DDDG) as a representation of an
accelerator without having to generate RTL.
Starting with an unconstrained program
DDDG, which corresponds to an initial rep-
resentation of accelerator hardware, Aladdin
applies optimizations as well as constraints to
the graph to create a realistic model of acceler-
ator activity. We rigorously validated Aladdin
against RTL implementations of accelerators
from both handwritten Verilog and a com-
mercial high-level synthesis (HLS) tool for
various applications, including accelerators in
Memcached,2 HARP,3 NPU,4 and a com-
monly used throughput-oriented benchmark

suite called SHOC.5 Our results show that
Aladdin can model performance within 0.9
percent, power within 4.9 percent, and area
within 6.6 percent compared to accelerator
designs generated by traditional RTL flows. In

CPU

16% 18%
14%

22%
64%22%66% 60%

18%

Apple A6 Apple A7 Apple A8

GPU Others

(a) (b) (c)

Figure 1. Die area breakdown of Apple’s systems on chips (SoCs). (a) A6 (iPhone 5), (b) A7 (iPhone 5s), and (c) A8 (iPhone 6).

More than half of the die area is dedicated to specialized IP blocks.

30

25

20

15

N
o.

 o
f s

pe
ci

al
iz

ed
 IP

 b
lo

ck
s

10

5

0
A4 A5 A6 A7 A8

Figure 2. Number of specialized IP blocks across generations of Apple’s

SoCs. We see a consistent increase in the number of blocks.

...

MAY/JUNE 2015 59

addition, Aladdin provides these estimates
more than 100 times faster.

Aladdin captures accelerator design trade-
offs, enabling new architectural research direc-
tions in heterogeneous systems comprising
general-purpose cores, accelerators, and a
shared memory hierarchy. We demonstrated
this capability by integrating Aladdin with a
full memory hierarchy model. Such infrastruc-
ture lets users explore customized and shared
memory hierarchies for accelerators in a heter-
ogeneous environment. In a case study with
the GEMM benchmark, Aladdin uncovers
significant high-level design tradeoffs by evalu-
ating a broader design space of the entire sys-
tem. This analysis results in more than 3�
performance improvements compared to the
conventional approach of designing accelera-
tors in isolation.

Background
Hardware acceleration exists in many

forms, ranging from analog accelerators,
fixed-function accelerators, and program-
mable accelerators, such as GPUs and digital
signal processors. In this work, we focus on
fixed-function accelerators. We discuss the
design flow, design space, and state-of-the-art
research infrastructure for fixed-function
accelerators in order to illustrate the chal-
lenges associated with current accelerator
research and discuss why a tool like Aladdin
opens up new research opportunities for
architects.

Accelerator design flow
The current accelerator design flow

requires multiple CAD tools, which is inher-
ently tedious and time-consuming. The proc-
ess starts with a high-level description of an
algorithm; then, designers either manually
implement the algorithm in RTL or use HLS
tools, such as Xilinx’s Vivado HLS, to com-
pile the high-level implementation (for
example, C/Cþþ) to RTL.

Writing RTL manually takes significant
effort, and the quality highly depends on
designers’ expertise. Although HLS tools
offer opportunities to automatically generate
the RTL implementation, extensively tuning
C code is still necessary to meet design
requirements. After generating RTL, design-
ers must use commercial CAD tools, such as
Synopsys’s Design Compiler and Mentor
Graphics’ ModelSim, to estimate power and
cycle counts.

In contrast, Aladdin takes unmodified,
high-level language descriptions of algo-
rithms to generate a DDDG representation
of accelerators, which accurately models the
cycle-level power, performance, and area of
realistic accelerator designs. As a pre-RTL
simulator, Aladdin is orders of magnitude
faster than existing CAD flows.

Accelerator design space
Despite the application-specific nature of

accelerators, the accelerator design space is
quite large, given a range of architecture- and

GPGPU

Big core

Private L1$ Private L1$ Private L1$

Private L1$/
scratchpad

reg_a reg_b

Accelerator-
specific
datapath

Little
core

Little
core

Shared LLC and NoC

Application-specific
accelerators

Figure 3. Future heterogeneous architecture will include a large number of customized

accelerators. Large design space exploration is needed to design such architecture.

..

TOP PICKS

..

60 IEEE MICRO

circuit-level alternatives. Figure 4 illustrates a
power-performance design space of accelera-
tor designs for the GEMM workload from
the SHOC benchmark suite. The square
points were generated from a commercial
HLS flow sweeping datapath parameters,
including loop-iteration parallelism, pipelin-
ing, array partitioning, and clock frequency.
However, HLS flows generally provision a
fixed latency for all memory accesses, implic-
itly assuming local scratchpad memory fed
by direct memory access (DMA) controllers.

Such simple designs are not well suited for
capturing data locality or interactions with
complex memory hierarchies. The circle
points in Figure 4 were generated by Aladdin
integrated with a full cache hierarchy and
memory model, sweeping not only datapath
parameters but also memory parameters. By
doing so, Aladdin exposes a rich design space
that incorporates the realistic memory penal-
ties in terms of time and power, which is
impractical with existing HLS tools alone.

State-of-the-art accelerator research
infrastructure

The International Technology Roadmap for
Semiconductors (ITRS) predicts hundreds to
thousands of customized accelerators by
2022.6 However, state-of-the-art accelerator
research projects still contain only a handful
of accelerators because of the cumbersome
design flow that inhibits computer architects
from evaluating large accelerator-centric sys-
tems. Table 1 categorizes accelerator-related
research projects in the computer architecture
community over the past five years based on
the means of implementation (handwritten
RTL versus HLS tools) and the scope of pos-
sible design exploration.

Researchers have been able to propose
novel implementations of accelerators for a
wide range of applications, by either writing
RTL directly or using HLS tools despite the
time-consuming process. With the help of
the HLS flow, we have begun to see studies
evaluating design tradeoffs in accelerator
datapaths, which is otherwise impractical
using handwritten RTL. However, as dis-
cussed earlier, HLS tools cannot easily navi-
gate large design spaces of heterogeneous
architectures. This inadequacy in infrastruc-

ture has confined the exploratory scope of
accelerator research.

The Aladdin framework
Aladdin takes high-level language descrip-

tions of algorithms and accelerator design
parameters as inputs and then outputs power,
performance, area, and cycle-level activities
of accelerator implementations, including
memory activity that can be connected with
shared memory and interconnect models.
Aladdin can be first used as an accelerator
simulator that models an accelerator’s behav-
ior in an accelerator-rich SoC to facilitate the
evaluation of the interaction between acceler-
ators and shared resources like memory. On
the other hand, Aladdin can also be used as
an early-stage accelerator design assistant that
allows SoC designers to quickly navigate the
large design space of accelerators before they
start implementing RTL, thereby greatly
reducing design iterations.

Modeling methodology
The foundation of the Aladdin infrastruc-

ture is the use of DDDG to represent acceler-
ators. A DDDG is a directed acyclic graph

140 Datapath + memory
Datapath only

120

100

80

60

40

20

0
0 200 400 600 800

Execution time (μs)

A
cc

el
er

at
or

 p
ow

er
 (

m
W

)

1,000 1,200

Figure 4. GEMM design space. A large design space is overlooked if we

ignore the memory parameters.

...

MAY/JUNE 2015 61

wherein nodes represent computation and
edges represent dynamic data dependences
between nodes. The dataflow nature of hard-
ware accelerators makes the DDDG a good
candidate to model their behavior. Figure 5
illustrates Aladdin’s overall structure, starting
from a C description of an algorithm and
passing through an optimization phase, where
the DDDG is constructed and optimized to
derive an idealized representation of the algo-
rithm. The idealized DDDG then passes to a
realization phase that restricts the DDDG by
applying realistic program dependences and
resource constraints. User-defined configura-
tions allow wide design space exploration of
accelerator implementations. The outcome of
these two phases is a pre-RTL, power-per-
formance model of accelerators.

Aladdin uses a DDDG to represent pro-
gram behaviors so that it can take arbitrary C
code descriptions of an algorithm—without
any modifications—to expose algorithmic
parallelism. This fundamental feature lets
users rapidly investigate different algorithms
and accelerator implementations. Owing to
its optimistic nature, dynamic analysis has
been previously deployed in parallelism
research exploring the limits of instruction
level parallelism (ILP)16 and recent modeling

frameworks for multicore processors.17 These
studies sought to quickly measure the upper
bound of performance achievable on an ideal
parallel machine. Our work has two main
distinctions from these efforts. First, previ-
ous efforts model traditional Von Neumann
machines where instructions are fetched,
decoded, and executed on a fixed, but pro-
grammable, architecture. In contrast, Aladdin
models a vast palette of different accelerator
implementation alternatives for the DDDG;
the optimization phase incorporates typical
hardware optimizations, such as removing
memory operations via customized storage
inside the datapath and reducing the bit
width of functional units. The second dis-
tinction is that Aladdin provides a realistic
power-performance model of accelerators
across a range of design alternatives during
its realization phase, unlike previous work
that offered an upper-bound performance
estimate.

In contrast to dynamic approaches, paral-
lelizing compilers and HLS tools use program
dependence graphs (PDG) that statically cap-
ture both control and data dependences. Static
analysis is inherently conservative in its
dependence analysis, because it is used to
generate code and hardware that works in all

Table 1. Accelerator research infrastructure.

Means of

implementation Novel accelerator design

Accelerator datapath

tradeoffs

Heterogeneous

SoC tradeoffs

Hand-coded RTL Buffer-integrated cache,7

Memcached,2,8 Sonic Millip3De,9 HARP3

Inadequate Inadequate

High-level

synthesis (HLS)

LINQits,10 Convolution Engine,11

Conservation Cores12

Cong,13 Liu,14 Reagen15 Inadequate

Optimization phase

Optimistic
IR

Initial
DDDG

Idealistic
DDDG

Program-
constrained

DDDG

Resource-
constrained

DDDG

Power
model

Power

Time

ActivityC
code

Realization phase

Figure 5. Overview of the Aladdin framework. Aladdin takes C code and passes it through an optimization phase and a

realization phase to estimate an accelerator’s power and performance.

..

TOP PICKS

..

62 IEEE MICRO

circumstances and is built without runtime
information. A classic example of this conser-
vatism is the enforcement of false dependences
that restrict algorithmic parallelism. For
instance, programmers often use pointers to
navigate arrays, and disambiguating these
memory references is a challenge for HLS
tools. Such situations frequently lead to
designs that are more sequential compared to
what a human RTL programmer would
develop. Therefore, although HLS tools offer
the opportunity to automatically generate
RTL, designers still need to extensively tune
their C code to expose parallelism explicitly.
Thus, Aladdin differs from HLS tools; it is a
pre-RTL simulator to model the accelerator’s
behavior, whereas HLS is burdened with gen-
erating actual, correct hardware.

Optimization phase
The optimization phase forms an ideal-

ized DDDG that represents only the funda-
mental dependences of the algorithm. An
idealized DDDG for accelerators must satisfy
three requirements:

� express only necessary computation
and memory accesses,

� capture only true read-after-write de-
pendences, and

� remove unnecessary dependences in
the context of customized accelerators.

Here, we describe how Aladdin’s optimi-
zation phase addresses these requirements.

Optimistic intermediate representation. Alad-
din builds the DDDG from a dynamic
instruction trace, where the choice of the
instruction set architecture (ISA) significantly
impacts the complexity and granularity of the
nodes in the graph. In fact, a trace using a
machine-specific ISA contains instructions
that are not part of the program but produced
due to the artifacts of the ISA (for example,
register spills).18 To avoid such artifacts, Alad-
din uses a high-level, machine-independent
intermediate representation (IR) provided by
the LLVM compiler. The LLVM IR is opti-
mistic because it allows an unlimited number
of registers, eliminating additional instructions
associated with register spilling. We use a cus-
tomized LLVM pass to emit fully optimized

IR instructions in a trace file. The trace
includes dynamic instruction information
such as operation codes, register IDs, parame-
ter data values, and dynamic addresses of
memory operations.

Initial DDDG. Aladdin analyzes both regis-
ter and memory dependences based on the
IR trace. Only true read-after-write data
dependences are respected in the initial
DDDG construction. This DDDG is opti-
mistic enough for the purpose of ILP limit
studies but is missing several characteristics of
hardware accelerators.

Idealized DDDG. Hardware accelerators can
take on application-specific features not
modeled in the initial DDDG. Aladdin gen-
erates an idealized DDDG representation of
the original algorithm by employing com-
monly used hardware customization strat-
egies such as bit-width tuning, strength
reduction, induction-variable removal, and
memory-to-register conversion.19

Realization phase
The realization phase uses program and

resource parameters, defined by users, to con-
strain the idealized DDDG generated in the
optimization phase.

Program-constrained DDDG. The idealized
DDDG assumes that hardware designers can
eliminate all control and false data dependen-
ces at design time, which is too optimistic.
To model more realistic hardware designs,
program-constrained DDDG brings back
the control and data dependences that are
hard to resolve in static time. For example,
the idealized DDDG optimistically removes
all false memory dependences between
dynamic instructions, keeping true read-
after-write dependences. This is realistic for
memory accesses with addresses that can be
resolved at design time. However, some
algorithms have input-dependent memory
accesses (for example, histogram), wherein
different inputs result in different dynamic
dependences. Without runtime memory dis-
ambiguation support, designers must make
conservative assumptions about memory
dependences to ensure correctness. To model
realistic memory dependences, the realization

...

MAY/JUNE 2015 63

phase includes memory ambiguation that
constrains the input-dependent memory
accesses by adding dependences between all
dynamic instances of a load-store pair, as
long as a true memory dependence is
observed for any pair.

Resource-constrained DDDG. Finally, Aladdin
accounts for user-specified hardware resource
constraints, a subset of which is shown in Table
2. Users specify the type and size of hardware
resources in an input configuration file. Alad-
din then binds the program-constrained
DDDG onto the hardware resources, leading
to the resource-constrained DDDG. Aladdin
can easily sweep resource parameters to explore
an algorithm’s design space.

An example. Figure 6 illustrates different
phases of Aladdin transformations using a
microbenchmark as an example. After the IR
trace of the C code has been produced, the
optimization and realization phases generate
the resource-constrained DDDG that models
accelerator behavior. In this example, we
assume the user wants an accelerator with a
factor-of-2 loop-iteration parallelism and
without loop pipelining. The solid arrows in
the DDDG are true data dependences, and
the dashed arrows represent resource con-
straints, such as loop rolling and turning off
loop pipelining. The horizontal dashed lines
represent clock cycle boundaries. The corre-
sponding resource activities are shown to the
right of the DDDG example. We see that the
DDDG reflects the dataflow nature of the
accelerator. Figure 7 shows a realistic cycle-
level resource activity for one implementa-
tion of the fast Fourier transform (FFT)
benchmark, wherein Aladdin accurately cap-
tures the distinct phases of FFT.

Power and area models. We can construct
detailed power and area models by synthesiz-
ing microbenchmarks that exercise the func-
tional units. Our microbenchmarks cover all
of the computational instructions in IR so
that there is a one-to-one mapping between
nodes in the DDDG and functional units in
the power model. We synthesized these
microbenchmarks using Synopsys’s Design
Compiler in conjunction with a commercial
40-nm standard cell library to characterize the
switching, internal, and leakage power of each
functional unit. This characterization is fully
automated to easily migrate to new technolo-
gies. The memory power model is based on a
commercial register file and static RAM
(SRAM) memory compiler that accompanies
our standard cell library. We compared this
memory power model to CACTI and found
consistent trends, but we retained the memory
compiler model for consistency with the
standard cell library.

Limitations
As a dynamic modeling approach, Alad-

din has its limitations.

Algorithm choices. Aladdin does not auto-
matically sweep different algorithms. Rather,
it provides a framework to quickly explore
various hardware designs of a particular algo-
rithm. This means designers can use Aladdin
to quickly and quantitatively compare the
design spaces of multiple algorithms for the
same application to find the most suitable
algorithm choice.

Input dependent. Aladdin models only those
operations that appear in the dynamic trace,
which means it does not instantiate hardware
for code not executed with a specific input.
For Aladdin to completely model the hard-
ware cost of a program, users must provide
inputs that exercise all paths of the code.

Input C code. Aladdin can create a DDDG
for any C code. However, in terms of model-
ing accelerators, C constructs that require
resources outside the accelerator, such as sys-
tem calls and dynamic memory allocation,
are not modeled. In fact, understanding how
to handle such events is a research direction
that Aladdin facilitates.

Table 2. Realization phase user-defined parameters. i::j::k denotes

a set of values from i to k by a stepping factor j.

Parameters Example range

Loop rolling factor [1::2::trip count]

Clock period (ns) [1::2::16]

Functional unit latency Single cycle, pipelined

Memory ports [1::2::64]

..

TOP PICKS

..

64 IEEE MICRO

Aladdin validation
Figure 8 outlines the methodology used to

validate Aladdin. To generate Verilog, we
either hand-code RTL or use Xilinx’s Vivado
HLS tool. The RTL design flow is an iterative
process and requires extensive tuning of both
RTL and C code. The power and area esti-
mates from Aladdin are compared against
Verilog synthesized by Design Compiler using
commercial 40-nm standard cells. Aladdin’s
performance model is validated against Mod-
elSim Verilog simulations. The Switching
Activity Interchange Format (SAIF) activity

file generated from ModelSim is fed to Design
Compiler to capture the switching activity at
the gate level.

Figure 9 shows that Aladdin accurately
models performance, power, and area com-
pared against RTL implementations across
all of the presented benchmarks with average
errors of 0.9, 4.9, and 6.5 percent, respec-
tively. For each SHOC workload, we vali-
dated six points on the power-performance
Pareto frontier. The SHOC validation results
show that Aladdin accurately models entire
design spaces, whereas for single accelerator

C code:

IR trace:

0. r0 = 0
1. r4 = load (r0 + r1) //load a[i]
2. r5 = load (r0 + r1) //load b[i]
3. r6 = r4 +r5
4. store(r0 + r3, r6) //store c[i]
5. r0 = r0 + 1
6. r4 = load (r0 + r1) //load a[i]
7. r5 = load (r0 + r2) //load b[i]
8. r6 = r4 + r5
9. store(r0 + r3, r6) //store c[i]

10. r0 = r0 +1

Resource activity

...

// ++i

// ++i

for (i = 0; i < N; ++i)
c[i] = a[i] + b[i];

Resource-constrained DDDG

0. i=0

1.Id a 2.Id b

3.+

4.st c

10.i++

11.Id a 12.Id b

13. +

14.st c

20.i++ 25.i++

19.st c

Cycle

+ +

+

+

+

+

+

+

+

MEM

MEM

MEM

MEM MEM MEM MEM

MEM

MEM MEM MEM

MEM

18.+

16.Id a 17.Id b

15.i++

9.st c

8.+

7.Id b6.Id a

5.i++

Figure 6. Different phases of Aladdin transformation illustrated with a microbenchmark:

starting from a C code, to an intermediate representation (IR) trace, then a resource-

constrained dynamic data dependence graph (DDDG), and finally a dynamic activity profile.

...

MAY/JUNE 2015 65

designs, Aladdin is not subject to HLS short-
comings and can accurately model different
customization strategies.

Aladdin also enables rapid design space
exploration of accelerators. Table 3 quantifies
the differences in algorithm-to-solution time
to explore a design space of the FFT bench-
mark with 36 points. Compared to tradi-
tional RTL flows, Aladdin skips the time-
consuming RTL generation, synthesis, and
simulation process. On average, it takes 87
minutes to generate a single design using the
RTL flow but only 1 minute for Aladdin,
including both Aladdin’s optimization phase

(50 seconds) and realization phase (12 sec-
onds). However, because Aladdin needs to
perform the optimization phase only once
for each algorithm, this optimization time
can be amortized across large design spaces.
Consequently, it takes only 7 minutes to enu-
merate the full design space of FFT with
Aladdin, compared to 52 hours with the
RTL flow.

Embracing the era of specialization
Customized architectures comprising

CPUs, GPUs, and accelerators are already
seen in mobile systems and are beginning to
emerge in servers and desktops. However,
current SoC designs that pull together hard
IP blocks into a single integrated substrate—
simply continuing the multidecade trend of
SoC integration—cannot leverage higher-
level coordination and optimization between
traditional general-purpose cores, accelera-
tors, and shared resources such as cache hier-
archies. As the industry dives further into this
era of specialization, there is a clear need for a
design methodology like Aladdin that facili-
tates broad design space exploration of next-
generation heterogeneous architectures.

To illustrate, we consider a heterogeneous
system comprising a general-purpose core, a
GEMM accelerator, and a shared L2 cache
that can be accessed by both the core and the
accelerator. Figure 10a shows the accelerator
design space without memory contention
from the general-purpose core. We modulate
the algorithmic blocking factor and find that a
blocking factor of 16 is always better than 32
with respect to both power and performance.

200

150

Twiddle

TwiddleFFT8

FFT8

FFT8

Shuffle Shuffle

100

50

0
0 200 400 600

Time (cycles)

N
o.

 o
f a

ct
iv

e
fu

nc
tio

na
l u

ni
ts

 a
nd

 b
an

d
w

id
th

800

Active functional units
Memory bandwidth

Figure 7. Realistic cycle-level functional units and memory activity of a fast

Fourier transform (FFT) accelerator. This cycle-level activity is also an input

to the power model to represent the dynamic activity of accelerators.

Aladdin

C code

RTL
designer

HLS C
tuning Vivado HLS

Design iteration

Verilog

ModelSim

Design
compiler

Activity

Power performance

Figure 8. Aladdin validation flow. Aladdin’s estimates are compared against synthesized

accelerators using commercial CAD tools.

..

TOP PICKS

..

66 IEEE MICRO

60

140

1.0

0.8

0.6

0.4

A
re

a
(m

m
2)

A
re

a
(m

m
2)

0.2

0.0

120

100

80

60

40

20

0

50

40

0.9%

4.9%

6.5%
15

10–3

10

5

0

5

3

2

P
ow

er
 (

m
W

)

P
ow

er
 (

m
W

)

1

0

4

3

Ti
m

e
(K

C
yc

le
s)

2

1

0

Aladdin
RTL flow

Ti
m

e
(K

C
yc

le
s)

6

4

2

0
MD

STENCIL FFT
GEMM

TRIAD
SORT

SCAN

REDUCTION

MD
STENCIL FFT

GEMM
TRIAD

SORT
SCAN

REDUCTION

NPU
HASH

HARP

NPU
HASH

HARP

MD
STENCIL FFT

GEMM
TRIAD

SORT
SCAN

REDUCTION NPU
HASH

HARP

(a)

(b)

(c)

Figure 9. Aladdin validation results against RTL implementations. (a) Performance, b) power, and (c) area validation. Aladdin

accurately models performance, power, and area across various benchmarks.

Table 3. Algorithm-to-solution time per design.

Design stage Hand-coded RTL HLS Aladdin

Programming effort High Medium N/A

RTL generation Designer dependent 37 minutes N/A

RTL simulation time 5 minutes N/A

RTL synthesis time 45 minutes N/A

Time to solution per design 87 minutes 1 minute

Time to solution (36 designs) 52 hours 7 minutes

...

MAY/JUNE 2015 67

However, when both the accelerator and the
core actively access the shared cache, shown in
Figure 10b, we see that blocking factor 32
offers better power-performance tradeoffs
than blocking factor 16. With a larger block-
ing factor, the accelerator requires fewer refer-
ences to the matrices in total and, thus, fewer
data requests from the L2 cache. If designers
had picked a blocking factor of 16 instead of
32 without considering the memory conten-

tion, the accelerator could suffer up to 3�
performance degradation in a contended sys-
tem. Aladdin helps designers find and avoid
such design decisions by evaluating system-
wide accelerator design tradeoffs, which is not
possible with conventional RTL-based design
flows.

M oving forward, the era of specializa-
tion poses unique opportunities and

challenges for computer architects. Despite
the energy efficiency benefit, accelerators lack
flexibility and programmability, especially
compared with general-purpose processors.
For example, virtual memory and cache
coherency are well-known mechanisms to
ease programmability in traditional systems
but are not commonly applied in today’s
accelerators. Instead, accelerators rely heavily
on software-managed scratchpad memory to
provide fixed-latency memory access and
DMA to communicate data back and forth,
which leads to significant chip resource and
software engineering cost. To redesign today’s
SoCs to support programmability, architects
can use Aladdin to evaluate the cost and ben-
efit by applying different mechanisms to
accelerators without worrying about low-level
implementation details.

Aladdin is publicly available, and we have
integrated Aladdin with the gem5 simulator,20

one of the most widely used architectural

160

140

120

100

80

60

40

20

0
0 0.5 1.0 1.5 2.0

Time (million cycles)

P
ow

er
 (

m
W

)

2.5 3.0

160

140

120

100

80

60

40

20

0
0 0.5 1.0 1.5 2.0

Time (million cycles)

P
ow

er
 (

m
W

)

2.5 3.0

block = 16

block = 32

(a) (b)

Figure 10. GEMM design space: (a) without contention and (b) with contention. A blocking factor of 16 outperforms a blocking

factor of 32 when no memory contention presents, but the opposite occurs when there is memory contention.

gem5 gem5

Cacti/Orion2
GPGPU-

Sim

Aladdin

Figure 11. SoC simulation infrastructure with Aladdin. Aladdin can be

integrated with other architectural simulators to model future

heterogeneous SoCs.

..

TOP PICKS

..

68 IEEE MICRO

simulators in the community. Aladdin, inte-
grated with gem5, lets researchers model an
SoC-like environment (for example, Figure
11). Tools like Aladdin will transform the proc-
ess of architectural design for heterogeneous
systems, unlocking new opportunities for wide
adoption of accelerator-rich architectures. MICRO

Acknowledgments
This work was partially supported by C-

FAR, one of six centers of STARnet, a Semi-
conductor Research Corporation program
sponsored by MARCO and DARPA, the
National Science Foundation (NSF) Expedi-
tions in Computing Award no. CCF-
0926148, DARPA under contract no.
HR0011-13-C-0022, and a Google Faculty
Research Award. Any opinions, findings,
conclusions, or recommendations expressed
in this material are those of the authors and
do not necessarily reflect the views of our
sponsors.

..
References
1. H. Esmaeilzadeh et al., “Dark Silicon and

the End of Multicore Scaling,” Proc. 38th

Ann. Int’l Symp. Computer Architecture,

2011, pp. 365–376.

2. K.T. Lim et al., “Thin Servers with Smart

Pipes: Designing SOC Accelerators for

Memcached,” Proc. 40th Ann. Int’l Symp.

Computer Architecture, 2013, pp. 36–47.

3. L. Wu et al., “Navigating Big Data with

High-Throughput, Energy-Efficient Data Par-

titioning,” Proc. 40th Ann. Int’l Symp. Com-

puter Architecture, 2013, pp. 249–260.

4. H. Esmaeilzadeh et al., “Neural Acceleration

for General-Purpose Approximate Pro-

grams,” Proc. 45th Ann. IEEE/ACM Int’l

Symp. Microarchitecture, 2012, pp.

449–460.

5. A. Danalis et al., “The Scalable Heterogene-

ous Computing (SHOC) Benchmark Suite,”

Proc. 3rd Workshop General-Purpose Com-

putation on Graphics Processing Units,

2010, pp. 63–74.

6. System Drivers, ITRS, 2013; www.itrs.net

/ITRS%201999-2014%20Mtgs,%20

Presentations%20&%20Links/2013ITRS

/2013Chapters/2013SysDrivers Summary

.pdf.

7. C.F. Fajardo et al., “Buffer-Integrated-

Cache: A Cost-Effective SRAM Architecture

for Handheld and Embedded Platforms,”

Proc. 48th Design Automation Conf., 2011,

pp. 966–971.

8. M. Lavasani, H. Angepat, and D. Chiou, “An

FPGA-Based In-line Accelerator for Mem-

cached,” IEEE Computer Architecture Let-

ters, 2013, pp. 57–60.

9. R. Sampson et al., “Sonic Millip3de: A Mas-

sively Parallel 3D-Stacked Accelerator for

3D Ultrasound,” Proc. IEEE 19th Int’l Symp.

High Performance Computer Architecture,

2013, pp. 318–329.

10. E.S. Chung, J.D. Davis, and J. Lee, “Linqits:

Big Data on Little Clients,” Proc. 40th Int’l

Symp. Computer Architecture, 2013, pp.

261–272.

11. W. Qadeer et al., “Convolution Engine: Bal-

ancing Efficiency & Flexibility in Specialized

Computing,” Proc. 40th Ann. Int’l Symp.

Computer Architecture, 2013, pp. 24–35.

12. G. Venkatesh et al., “Conservation Cores:

Reducing the Energy of Mature

Computations,” Proc. 15th Conf. Architec-

tural Support for Programming Languages

and Operating Systems, 2010, pp. 205–218.

13. J. Cong, K. Gururaj, and G. Han, “Synthesis

of Reconfigurable High-Performance Multi-

core Systems,” Proc. ACM/SIGDA Int’l

Symp. Field Programmable Gate Arrays,

2009, pp. 201–208.

14. H.-Y. Liu, M. Petracca, and L.P. Carloni,

“Compositional System-Level Design

Exploration with Planning of High-Level Syn-

thesis,” Proc. Conf. Design, Automation

and Test in Europe, 2012, pp. 641–646.

15. B. Reagen et al., “Quantifying Acceleration:

Power/Performance Trade-offs of Applica-

tion Kernels in Hardware,” Proc. Int’l Symp.

Low Power Electronics and Design, 2013,

pp. 395–400.

16. D.W. Wall, “Limits of Instruction-Level Par-

allelism,” Proc. 4th Int’l Conf. Architectural

Support for Programming Languages and

Operating Systems, 1991, pp. 176–188.

17. D. Jeon et al., “Kismet: Parallel Speedup

Estimates for Serial Programs,” Proc. ACM

Int’l Conf. Object Oriented Programming

...

MAY/JUNE 2015 69

Systems Languages and Applications,

2011, pp. 519–536.

18. Y.S. Shao and D. Brooks, “ISA-Independent

Workload Characterization and Its Implica-

tions for Specialized Architectures,” Proc.

IEEE Int’l Symp. Performance Analysis of

Systems and Software, 2013, pp. 245–255.

19. Y.S. Shao et al., “Aladdin: A Pre-RTL, Power

Performance Accelerator Simulator Enabling

Large Design Space Exploration of Custom-

ized Architectures,” Proc. ACM/IEEE 41st

Int’l Symp. Computer Architecture, 2014,

pp. 97–108.

20. N.L. Binkert et al., “The Gem5 Simulator,”

ACM SIGARCH Computer Architecture

News, vol. 39, no. 2, 2011, pp. 1–7.

Yakun Sophia Shao is a PhD candidate in
computer science at Harvard University. Her
research focuses on computer architecture,
particularly on modeling and design for spe-
cialized architectures. Shao has an MS in
computer science from Harvard University.
Contact her at shao@eecs.harvard.edu.

Brandon Reagen is a PhD student in com-
puter science at Harvard University. His
research interests include methods for low-
power, high-performance design leveraging
specialized hardware, accelerator-centric sys-
tems, and computer architecture/VLSI
codesign. Reagen has an MS in computer
science from Harvard University. Contact
him at reagen@fas.harvard.edu.

Gu-Yeon Wei is a Gordon McKay Professor
of Electrical Engineering and Computer
Science at Harvard University. His research
interests include mixed-signal integrated cir-
cuits, computer architecture, and runtime
software, looking for cross-layer opportuni-
ties to develop energy-efficient systems. Wei
has a PhD in electrical engineering from
Stanford University. Contact him at
guyeon@eecs.harvard.edu.

David Brooks is the Haley Family Professor
of Computer Science at Harvard University.
His research interests include architectural
and software approaches to address power,
thermal, and reliability issues for embedded
and high-performance computing systems.
Brooks has a PhD in electrical engineering
from Princeton University. Contact him at
dbrooks@eecs.harvard.edu.

..

TOP PICKS

..

70 IEEE MICRO

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

